

Phyto-toxicological Effects of Copper Nanoparticles in Bell Pepper (*Capsicum annum*) plants

Swati Rawat ESE PhD Student Gardea Group, University of Texas at El Paso

Sustainable Nanotechnology Organization Orlando, FL, November, 2016

Structure of the presentation

- Introduction
 - Nanoparticles
 - Bell pepper plants
- Methodology
- Results
- Conclusions

Introduction

WCEIN Factors affecting NPs induced toxicity towards terrestrial plants

Reddy, P. V. L., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?. *Science of The Total Environment*, *568*, 470-479.

Copper Nanoparticles (NPs)

SEM Micrographs of copper nanoparticles

Hong, Jie, Cyren M. Rico, Lijuan Zhao, Adeyemi S. Adeleye, Arturo A. Keller, Jose R. Peralta-Videa, and Jorge L. Gardea-Torresdey. "Toxic Effects of Copper-Based Nanoparticles Or Compounds to Lettuce (Lactuca Sativa) and Alfalfa (Medicago Sativa)." *Environmental Science: Processes & Impacts* 17, no. 1 (2015): 177-185.

Global flows for Cu and oxides of Cu (metric tons/yr) in 2010

Keller, Arturo A., Suzanne McFerran, Anastasiya Lazareva, and Sangwon Suh. "Global Life Cycle Releases of Engineered Nanomaterials." *Journal of Nanoparticle Research* 15, no. 6 (2013): 1-17.

Bell pepper plants Capsicum annum

- ➢ Rich in anti-oxidants like carotenoid, sugars, vitamin C.
- Fruit is 92% water, rest are carbohydrates and small amount of protein and fat

Methodology

Soil

- > Soil collected on the east side of El Paso, TX.
- Soil characterization conducted on Malvern Mastersizer Hybrid 2000G
 - Sand : 19.7 %
 - Silt : 64.92 %
 - Clay : 15.38 %
- Natural soil : silt loam

UC VCEIN Sowing seeds at the green house for seedling transplantation

Preparing pots in the lab

Plant growth stages : full growth cycle 90 days

Seedlings growing

Seedlings ready for transplantation

Plants 10 days post transplantation

Freshly transplanted seedlings

NOR.

UNITED S

400 might news

Plant growth stages : full growth cycle 90 days

Plants 30 days post transplantation

Fully matured plants, 90 days post transplantation

Plants 60 days post transplantation, fruiting

Plants 45 days post transplantation, flowering

Conditions at the green house

- Controlled environment, temperature, relative humidity, and light intensity
 - Average light 10.1 mol/m²/d
 - Average day temperature 27.2±1.6°C
 - Average night temperature 25±2.1°C
- ➢ Water every other day, or as need be with fertilizer solution, 15-5-15 ratio of N-P₂O₅-K₂O, pH: 5.8, EC: 1.00 mS/cm
- Abamectin, Avid 0.15 EC , to treat aphids or white fly

USD

Harvesting

Gas exchange measurement: LI-6400XT portable photosynthesis system

Acid digestion and sample analysis on the ICP-OES

Results

Chlorophyll content, nCuO vs ionic copper treatments

EINGas Exchange: Stomatal conductance, nCuO vs ionic copper treatments

Gas exchange : Photosynthesis, nCuO vs ionic Research Level copper treatments

Elemental analysis of root samples, copper

Elemental analysis of leaves samples, copper

Elemental analysis of fruit samples,

copper

Conclusions

➤ Gas exchange : evapotranspiration, stomatal conductance, and photosynthesis were not significantly different with respect to the control but were statistically different with respect to each other at the different concentrations of nCuO and CuCl₂.

→ The copper content in root samples was significantly increased at 125 $mg/kg CuCl_2$, 250 mg/kg nCuO and $CuCl_2$, and at 500 mg/kg nCuO and $CuCl_2$ wrt the control. The two treatments were significantly different at the highest concentration.

➤ The leaf samples found significantly higher amount of copper at 250 mg/kg and 500 mg/kg concentration of both the compounds wrt the control.

Significantly higher amount of copper was found in the fruit samples at 125 mg/kg ionic treatment.

Acknowledgements

UCCEIN for funding the research

> Texas AnM Agrilife Research and Extension Centre at El Paso, TX.

- ➢University of Texas at El Paso
- ≻Lab Mates
- ➢ Faculty
 - Dr Youping Sun
 - Dr Jose A. Hernandez
 - Dr Jose R. Peralta
 - Dr Jorge Gardea Torresday
- >The SNO conference organizers

References

Reddy, P. Venkata Laxma, J. A. Hernandez-Viezcas, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. "Lessons Learned: Are Engineered Nanomaterials Toxic to Terrestrial Plants?" *Science of the Total Environment* 568, (10/15, 2016): 470-479.

Hong, Jie, Cyren M. Rico, Lijuan Zhao, Adeyemi S. Adeleye, Arturo A. Keller, Jose R. Peralta-Videa, and Jorge L. Gardea-Torresdey. "Toxic Effects of Copper-Based Nanoparticles Or Compounds to Lettuce (Lactuca Sativa) and Alfalfa (Medicago Sativa)." *Environmental Science: Processes & Impacts* 17, no. 1 (2015): 177-185.

Keller, Arturo A., Suzanne McFerran, Anastasiya Lazareva, and Sangwon Suh. "Global Life Cycle Releases of Engineered Nanomaterials." *Journal of Nanoparticle Research* 15, no. 6 (2013): 1-17.

Thank You! Questions ?

